TABLE OF CONTENTS

I. Introduction ... 3

II. Installation Procedure 5

III. PRT-MPF Specifications 8
 3-1. Hardware Specifications 8
 3-2. Function of Monitor Program 8

IV. Theory of Hardware Circuit 9
 4-1. PRT-MPF Hardware Circuit 9
 4-2. PRT-MPF Pin Function P1 11
 4-3. MTP201A 12
 4-4. Timing chart of MTP201A 13
 4-5. Theory of Operation 14

V. General Conception 17
 5-1. Monitor Program of PRT-MPF 17
 5-2. General Conception of BASIC-MPF 18
 5-3. Monitor Subroutines 20

VI. Operation Introduction 26
 6-1. Printer Driver Utility 27
 6-2. Z80-Disassembler Listing Utility 28
 6-3. Memory Dump Utility 30
 6-4. BASIC Program Listing Utility 31
I. Introduction

The printer for Multitech's MPF-I microcomputer (PRT-MPF) is a small, low cost PC board on which a micro thermal printer is built. This optional peripheral enables your MPF-I to perform the printing function.

With your PRT-MPF, you can print out data and programs processed by your MPF-I as a form of permanent record at extremely low cost.

The printer board can be interfaced to MPF-I microcomputer with a flat 40 pins connector cable, which is provided by Multitech or its worldwide distributor network. To activate your PRT-MPF, you have to provide a power input of +9V/1A to it using a power adaptor which requires power input of either 110V or 220V.

The PRT-MPF is controlled by a single +5V EPROM 2532 which has a memory totaling 4K bytes. Since the monitor is programmable, you can design your own printer interface board by changing the monitor chip of your PRT-MPF. By doing so, you can familiarize yourself with the interfacing principles between microprocessor and printers. This is one of the unique features of PRT-MPF.

The PRT-MPF is very compact——only 11.15 cm wide and 15.40 cm long. It can be fitted easily into the package of MPF-I microcomputer.
The PRT-MPF uses a micro thermal printer (MTP201A). It's mechanical specifications are as follows:

a. Dimensions: 70mm (W) x 33mm (D) x 14.4mm (H)
b. Weight: 45 grams
c. Number of characters per line: 20 characters/138 dots
d. Width of printing per line: 46mm
e. Size of characters: 2 x 1.7mm (5 x 7 dot matrix) each character
f. Space between lines: 1.8±0.4mm
g. Width of paper: 58mm
h. Tension of paper feed: more than 20 g
i. Printing speed: approximately 0.8 line/second (when the voltage of motor is 5V)
j. Life of printer: 500,000 lines (at standard printing test condition)

The printing method of PRT-MPF is as follows:

a. Principle: thermal serial method
b. Printing direction: from left to right
c. Printing timing: tacho-generator synchronized method

The power source of the printer board PRT-MPF is 5 V.
II. Installation Procedure

1. All power should be turned off.
2. Connect the CPU BUS of MPF-I with P1 on the PRT-MPF by flat cable.
3. Plug in the MPF-I power plug.
4. Plug in the PRT-MPF power plug.
5. Set up the thermal paper
 a. Unwrap the thermal paper roll and put the paper roll as illustrated.
 b. Locate the thermal head.
c. Cut the thermal paper into an acute edge to make it easier to insert the thermal paper. (Note: A sharp edge is necessary to keep the thermal head from hindering the passage of the thermal paper.)

d. Slip the thermal paper into the slit at the bottom of the thermal printer as illustrated. Push the paper band until the tip of the thermal paper rolls from the slit under the paper cutter.
e. Locate the L-shaped paper support and screw it clockwise into the brass chassis on the PRT board.

f. Put the thermal paper roll on the paper support.

6. As power adaptor output has no load, the voltage is about 13V, but the voltage is about 10V when power adaptor output has load.
III. PRT-MPF Specifications

3-1. Hardware Specifications

1. Compatible with MPF-I. Use 40 pins flat ribbon cable and male connector to interface with MPF-I.
2. ROM: (Read Only Memory)
 Single +5V EPROM 2532 x 1 (2732 x 1 for new version), total 4K bytes.
 Monitor EPROM Address: 6000-6FFF.
3. Memory expansion area:
 Single +5V EPROM 2516/2716/2532 (2732 for new version), total 2K(4K) bytes.
 On-Board Expansion Address: 7000-7FFF.
4. Display: MPF-I display.
6. System Power Consumption: +5V/350mA.
7. Main Power input: +9V/1A adaptor is provided, power adaptor input 110/220V.
8. Interface Connector/Cable: 40 pins flat ribbon cable and male connector used for interfacing to MPF-I.
9. Extension Connector area: 40 pins flat ribbon cable male connector area provides the bus for CPU option.
10. Printer:
 Micro thermal printer MTP201A is a high performance thermal printer manufactured by the DAINI SEIKOSHA CO.
11. Physical Characteristic:
 Height: 1.6 cm
 Width: 11.15 cm
 Depth: 15.4 cm

3-2. Function of Monitor Program

1. Built-in alphanumeric character patterns.
2. Built-in printer drive utility.
4. Built-in MPF-I BASIC program listing utility.
5. Built-in Z80-Disassembler listing utility.
IV Theory of Hardware Circuit

4.1 PRT-MPF Hardware Circuit
P1 PIN FUNCTION

<table>
<thead>
<tr>
<th>PIN NO</th>
<th>SIGNAL</th>
<th>PIN NO</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A11</td>
<td>21</td>
<td>A10</td>
</tr>
<tr>
<td>2</td>
<td>A12</td>
<td>22</td>
<td>A9</td>
</tr>
<tr>
<td>3</td>
<td>A13</td>
<td>23</td>
<td>A8</td>
</tr>
<tr>
<td>4</td>
<td>A12</td>
<td>24</td>
<td>A7</td>
</tr>
<tr>
<td>5</td>
<td>A15</td>
<td>25</td>
<td>A6</td>
</tr>
<tr>
<td>6</td>
<td>A6</td>
<td>26</td>
<td>A5</td>
</tr>
<tr>
<td>7</td>
<td>D4</td>
<td>27</td>
<td>A4</td>
</tr>
<tr>
<td>8</td>
<td>D3</td>
<td>28</td>
<td>A3</td>
</tr>
<tr>
<td>9</td>
<td>D5</td>
<td>29</td>
<td>A2</td>
</tr>
<tr>
<td>10</td>
<td>D6</td>
<td>30</td>
<td>A1</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>31</td>
<td>A0</td>
</tr>
<tr>
<td>12</td>
<td>D2</td>
<td>32</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>D7</td>
<td>33</td>
<td>RFSH</td>
</tr>
<tr>
<td>14</td>
<td>D0</td>
<td>34</td>
<td>MT</td>
</tr>
<tr>
<td>15</td>
<td>D1</td>
<td>35</td>
<td>RESET</td>
</tr>
<tr>
<td>16</td>
<td>TINT</td>
<td>36</td>
<td>BUSRG</td>
</tr>
<tr>
<td>17</td>
<td>NMI</td>
<td>37</td>
<td>WAIT</td>
</tr>
<tr>
<td>18</td>
<td>HALT</td>
<td>38</td>
<td>BUSAR</td>
</tr>
<tr>
<td>19</td>
<td>MREQ</td>
<td>39</td>
<td>WR</td>
</tr>
<tr>
<td>20</td>
<td>IOREQ</td>
<td>40</td>
<td>RD</td>
</tr>
</tbody>
</table>
4-4. Timing chart of MTP201A

Timing Chart

Motor Drive
Motor Current
Motor Break
Switch
Tachogenerator
Timing Pulse
Thermal head driving pulse
Character

A: Timing Pulse Start Signal
B: Motor Stop Signal

1 cycle
Forward
Return
Stop

Paper Feed Period

100 m/sec

Begin of Timing Pulse

Beginning of 1st character

2 dot space between characters

more than 50 μsec
more than 450 μsec
4-5. Theory of Operation

1. Printing Method
 (1) Principle
 Thermal serial method
 (2) Printing Direction
 From left to right
 (3) Printing Timing
 Tacho-generator synchronized method
 (4) Home Detecting method
 The switch is off when the head comes to the left position.
 The motor shall stop when the switch turns off (110 μsec Low Level detecting).
 Printing shall start when the switch turns on (50 μsec High Level detecting).
 (1 dot space)

2. Characteristics of Motor Drive
 (1) Voltage of Power Source:
 5 ± 1V
 (2) Current Consumption of Motor:
 Less than 170 mA while printing.
 (at standard temperature and standard relative humidity)
 Less than 250 mA while paper feeding.
 (at standard temperature and standard relative humidity)
 (3) Motor Starting Current:
 700 mA max. (DC 5V)
 (4) Brake Current:
 500 mA max. (DC 5V)
 (5) Motor Stop Time:
 60 msec typ. (at the rated load of 5V)
 max. 100 msec (at the min. load of 6V)
 (6) Motor Stop signal:
 Within 1 msec after a switch is OFF.
3. TG Output Characteristics
 (1) TG Output Voltage:
 5V p-p (at rated load of 5V)
 max. 9V p-p (at the min. load of 6V)
 min. 2V (at the max. load of 4V)
 (2) TG Period:
 4 msec (at the rate load of 5V)
 max. 8 msec (at the max. load of 4V)
 min. 2.5 msec (at the min. load of 6V)
 (3) Internal Resistance:
 100 - 500 Ω

4. Characteristics of Switch
 (1) OFF Time
 TG Output: more than 8 cycles
 (2) Contact Resistance
 Less than 10 Ω (at the current of 50 μA)
 (3) Current
 1 mA max. (5 V DC max.)

5. Summary
 (1) The printer prints on heat sensitive roll paper by means of seven thermal elements, which can print 5 x 7 matrix dot characters. The seven thermal elements are mounted in fixed position on a moveable thermal head. During a print cycle, the thermal head is driven from left to right in a horizontal line. The individual thermal elements are turned on for discrete intervals during the thermal head movement forming the partial characters. The printed characters formed by dot patterns stored in the PRT-MPF monitor. After a row of characters has been printed, the motor driven platen advances the paper vertically by one line.
(2) When the thermal head is turned on, the printer will print by means of the state of the seven thermal elements. Thermal element TH1-TH7 are controlled by ULN2803A. When the output of ULN2803A is high, the thermal element is turned off and will not print.

(3) The motor speed is depended on the voltage source.

(4) The content of memory address 65FCH controls the intensity of the printer. The typical value is 18H, the user may change 18H to 19H or 1AH. This will improve intensity of the printer. Of course, the intensity of the printer will be decreased as changing 18H to 17H or 16H.
V. General Conception

5-1. Monitor Program of PRT-MPF

1. The stack pointer of PRT-MPF is 1F7CH.
2. The system RAM areas of PRT-MPF monitor program are 1FF4-1FFF and 1F7D-1F9F(line buffer). User's program should avoid destroying the system RAM areas of PRT-MPF.
3. If system RAM area does not exist (i.e. the system RAM area is not RAM), then Z80-Disassembler, BASIC listing, Memory dump will be destoryed.
5-2. General Conception of BASIC-MPF

a. Variable Name: The length is one or two characters. If the length is one character, it must be any of alphanumeric letter A-F. If the length is 2 characters, the first must be an alphanumeric letter A-F, the second must be any of numeric digit 0-9.

b. System RAM areas of BASIC-MPF

<table>
<thead>
<tr>
<th>Address</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>ORG 1800H</td>
</tr>
<tr>
<td>1800</td>
<td>VARBUF: DEFS 2* (6*10H+6) ;Variables buffer</td>
</tr>
<tr>
<td>18CC</td>
<td>DEFS 1</td>
</tr>
<tr>
<td>18CD</td>
<td>LINBUF: DEFS 21</td>
</tr>
<tr>
<td>18E2</td>
<td>FLAG: DEFS 1</td>
</tr>
<tr>
<td>18E3</td>
<td>STOP: DEFS 2</td>
</tr>
<tr>
<td>18E5</td>
<td>ST--: DEFS 2</td>
</tr>
<tr>
<td>18E7</td>
<td>DEFS 1</td>
</tr>
</tbody>
</table>

PRGBOT: END

Overlay the MPF-I keyboard with the BASIC name plate. Next key in [GOTO] [2] [0] [O] [O] [RUN] (0800 for 4K monitor). The BASIC Interpreter will first clear RAM buffer (1800H - 1FADH) i.e. set the contents of RAM buffer to be zero. Secondly, set the value of memory address 18E7 to be the delimiter-FF. Thus, if we set the starting to be 2017 (or 0817 for 4K monitor) and press the [RUN] key, the contents of user's program would not be destroyed.
c. The storage area of user's program begins at the memory address - 18E8H and terminates by a delimiter-FF. For example, if users key in only one instruction as follows.

010 LET A5 = 180

The BASIC Interpreter will accept the keyword and convert the keyword into the corresponding BASIC internal code. The above instruction occupies 12 bytes of memory. Please refer to the Page 15 of BASIC-MPF OPERATION MANUAL.

18E7 FF
18E8 00
18E9 01
18EA 00
18EB 1F
18EC 0A
18ED 05
18EE 18
18EF 00
18F0 00
18F1 01
18F2 08
18F3 80
18F4 FF
18F5 XX

The BASIC Interpreter sets Bit 7 of the last byte of each statement as the delimiter with a view to distinguish from another statements. From the above example, we know that 18F3 80 will be displayed when this statement is going on with another statements.

d. The stack pointer of the BASIC Interpreter is 1F9FH because the USERSTK of MPF-I is 1F9FH. Thus, if the user's programs are so large that in excess of the memory address - 1F9FH, the programs storing in the BASIC Interpreter and the MPF-I monitor will be disordered.
5-3. Monitor Subroutines

5.3.1 Summary

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>MNEMONIC</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>63A0</td>
<td>GETN</td>
<td>Convert one hexadecimal digit into ASCII code</td>
</tr>
<tr>
<td>65AC</td>
<td>MTPPRT</td>
<td>Print out the contents of line buffer</td>
</tr>
<tr>
<td>66A0</td>
<td>SHIFT</td>
<td>Drive the thermal head shift right</td>
</tr>
<tr>
<td>63C4</td>
<td>PLINEFD</td>
<td>Line feed</td>
</tr>
<tr>
<td>668FH</td>
<td>PLINE</td>
<td>Drive the paper vertically by two lines</td>
</tr>
</tbody>
</table>
5.3.2 GETN

[Address]: 63A0
[Function]: Convert one hexadecimal digit to ASCII code.
[Input]: The data stored in A.
[Output]: The first number is stored in (DE+1), and the second is in (DE+2), DE is increased by 2.
[Register]: Destroy AF, DE, BC.

Example: Convert the data in register A to ASCII code and the results is stored in 1820H.

1800 ORG 1800H
1800 111F18 LD DE, 181FH
1803 3E8F LD A, 8FH
1805 CDA063 CALL GETN
1808 76 HALT

Press [PC] then [GO] key, the hexadecimal digit in register A is converted to ASCII code the data in memory address 1820H is 38H, the data in memory address 1821H is 46H.
5.3.3 MTPPRT

[Address]: 65AC
[Function]: Print out the contents of line buffer.
[Input]: IX points to the line buffer.
[Output]: Print the contents of line buffer out.
[Register]: Destory AF', B'.

Example: Print out the message "MY NAME IS PRT-MPF".

<table>
<thead>
<tr>
<th>Address (Hex)</th>
<th>Instruction</th>
<th>Value (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>ORG</td>
<td>1800H</td>
</tr>
<tr>
<td>1800</td>
<td>LD</td>
<td>IX, 1820H</td>
</tr>
<tr>
<td>1804</td>
<td>CALL</td>
<td>MTPPRT</td>
</tr>
<tr>
<td>1807</td>
<td>HALT</td>
<td></td>
</tr>
<tr>
<td>1820</td>
<td>DEFB</td>
<td>4DH</td>
</tr>
<tr>
<td>1821</td>
<td>DEFB</td>
<td>59H</td>
</tr>
<tr>
<td>1822</td>
<td>DEFB</td>
<td>20H</td>
</tr>
<tr>
<td>1823</td>
<td>DEFB</td>
<td>4EH</td>
</tr>
<tr>
<td>1824</td>
<td>DEFB</td>
<td>41H</td>
</tr>
<tr>
<td>1825</td>
<td>DEFB</td>
<td>4DH</td>
</tr>
<tr>
<td>1826</td>
<td>DEFB</td>
<td>45H</td>
</tr>
<tr>
<td>1827</td>
<td>DEFB</td>
<td>20H</td>
</tr>
<tr>
<td>1828</td>
<td>DEFB</td>
<td>49H</td>
</tr>
<tr>
<td>1829</td>
<td>DEFB</td>
<td>53H</td>
</tr>
<tr>
<td>182A</td>
<td>DEFB</td>
<td>20H</td>
</tr>
<tr>
<td>182B</td>
<td>DEFB</td>
<td>50H</td>
</tr>
<tr>
<td>182C</td>
<td>DEFB</td>
<td>52H</td>
</tr>
<tr>
<td>182D</td>
<td>DEFB</td>
<td>54H</td>
</tr>
<tr>
<td>182E</td>
<td>DEFB</td>
<td>2DH</td>
</tr>
<tr>
<td>182F</td>
<td>DEFB</td>
<td>4DH</td>
</tr>
<tr>
<td>1830</td>
<td>DEFB</td>
<td>50H</td>
</tr>
<tr>
<td>1831</td>
<td>DEFB</td>
<td>46H</td>
</tr>
<tr>
<td>1832</td>
<td>DEFB</td>
<td>0DH</td>
</tr>
</tbody>
</table>
5.3.4 SHIFT

[Address]: 66A0
[Function]: Drive the thermal head to shift right.
[Input]: Delay time depends on register B.
[Output]: Printer head shifts to the right.
/Register]: Destroy A,B, only.

Example: Drive the printer head to shift right 1cm.

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Value</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>ORG</td>
<td>1800H</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>LD</td>
<td>B,45H</td>
<td></td>
</tr>
<tr>
<td>1802</td>
<td>CALL</td>
<td>SHIFT</td>
<td></td>
</tr>
<tr>
<td>1803</td>
<td>HALT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.5 PLINEFD

[Address]: 63C4
[Function]: line feed
[Input]: None
[Output]: Drive the paper vertically by one line.
[Register]: Destroy A, B only.

Example: Drive the printer vertically by one line print out the message "LINE FEED" and feed the line twice.

<table>
<thead>
<tr>
<th>1800</th>
<th>CDC463</th>
<th>ORG</th>
<th>1800H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>CDC463</td>
<td>CALL</td>
<td>PL INEFD</td>
</tr>
<tr>
<td>1803</td>
<td>DD212018</td>
<td>LD</td>
<td>IX, 1820H</td>
</tr>
<tr>
<td>1807</td>
<td>CDAC65</td>
<td>CALL</td>
<td>MTPPRT</td>
</tr>
<tr>
<td>180A</td>
<td>CDC463</td>
<td>CALL</td>
<td>PL INEFD</td>
</tr>
<tr>
<td>180D</td>
<td>CDC463</td>
<td>CALL</td>
<td>PL INEFD</td>
</tr>
<tr>
<td>1810</td>
<td>76</td>
<td>HALT</td>
<td></td>
</tr>
<tr>
<td>1820</td>
<td>DEFB</td>
<td>4CH</td>
<td></td>
</tr>
<tr>
<td>1822</td>
<td>DEFB</td>
<td>49H</td>
<td></td>
</tr>
<tr>
<td>1822</td>
<td>DEFB</td>
<td>4EH</td>
<td></td>
</tr>
<tr>
<td>1823</td>
<td>DEFB</td>
<td>45H</td>
<td></td>
</tr>
<tr>
<td>1824</td>
<td>DEFB</td>
<td>20H</td>
<td></td>
</tr>
<tr>
<td>1825</td>
<td>DEFB</td>
<td>46H</td>
<td></td>
</tr>
<tr>
<td>1826</td>
<td>DEFB</td>
<td>45H</td>
<td></td>
</tr>
<tr>
<td>1827</td>
<td>DEFB</td>
<td>45H</td>
<td></td>
</tr>
<tr>
<td>1828</td>
<td>DEFB</td>
<td>44H</td>
<td></td>
</tr>
<tr>
<td>1829</td>
<td>DEFB</td>
<td>0DH</td>
<td></td>
</tr>
</tbody>
</table>
5.3.6 PLINE

[Address]: 668F
[FUNCTION]: Drive the paper vertically by two lines.
[Input]: None
[Output]: Drive the paper vertically by two lines.
[Register]: Destroy A, B, only.
Example: Drive the printer to print out the message "LINE" and feed twice.

1800 ORG 1800H
1800 DD212018LD LD IX,1820H
1804 CDAC65 CALL MTPPRT
1807 CA8F66 CALL PLINE
180A 76 HALT
1820 DEFB 4CH
1821 DEFB 49H
1822 DEFB 4EH
1823 DEFB 45H
1824 DEFB 0DH

Example: The ASCII code 0A is a line feed code, so the following program is the same as the above program.

1800 ORG 1800H
1800 DD212018 LD IX,1820H
1804 CDAC65 CALL MTPPRT
1807 76 HALT
1820 DEFB 4CH
1821 DEFB 49H
1822 DEFB 4EH
1823 DEFB 45H
1824 DEFB 0AH
1825 DEFB 0AH
1826 DEFB 0DH
VI. Operation Introduction

The PRT-MPF functions should be operated under the monitor control. There are four utilities in the PRT-MPF monitor program as follows:

1. Printer driver utility
 [Address]: 65ACH

2. Z80-Disassembler listing utility
 [Address]: 6000H

3. Memory dump utility
 [Address]: 6300H

4. BASIC program listing utility
 [Address]: 6400H

5. Printer line feed
 [Address]: 6500H
6.1 Printer Driver Utility

[Address]: 65AC

The following procedures instruct user how to implement the utility in order to print out data in line buffer.
1. Set IX points to the line buffer (the starting address of the line buffer can be printed from the line you appoint).
2. The data length in line buffer could be stretched as you want but each row should be separated by OAH and the characters in every row can't be more than 20.
3. The end of the line buffer should be terminated by an ASCII code ODH.
4. The data in line buffer should be ASCII code only (0A, 0D and 20-5F).
5. The ASCII code OAH stands for line feed.
6. As to the example, please refer to 5.3.3.
7. If users want to use this Driver Utility with another microcomputer system, the system must be Z80 CPU based computer system.
6-2. Z80-Disassembler Listing Utility

[Address]: 6000

This utility can disassemble object code from memory into symbolic Z80 instructions. Starting from a specified address, each byte of memory is disassembled until a valid OP code is decoded. Once a valid OP code is found, the appropriate number of following bytes are disassembled to determine and display the instruction operand. Invalid OP code are indicated by question marks. User can set the memory area in blocks. To abort the disassembly operation at any time press the RESET button of MPF-I.

Example: Disassemble the data of 0000-0040H in memory.

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>UFP--1</td>
<td>; System reset</td>
</tr>
<tr>
<td>ADDR</td>
<td>6 0 0 0 6.0.0.0.31</td>
<td>; Set the starting address of Z80-disassembler</td>
</tr>
<tr>
<td>GO</td>
<td>x x x x -S</td>
<td>; S is the mnemonics of the starting address</td>
</tr>
<tr>
<td>0 0 0 0 0.0.0.0.-S</td>
<td>; Set the starting address on 0H</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>x x x x -E</td>
<td>; E is the mnemonics of the ending address</td>
</tr>
<tr>
<td>0 0 4 0 0.0.4.0.-E</td>
<td>; Set the ending address on 0040H</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>0.0.0.0.-d</td>
<td>; d is the mnemonics of a reference counter</td>
</tr>
<tr>
<td>GO</td>
<td></td>
<td>; Execute the disassembler program</td>
</tr>
<tr>
<td>LF</td>
<td></td>
<td>; Disassembler finished. Press any key except the RS, MONI, INTR, USER KEY, the printer will line feed automatically.</td>
</tr>
</tbody>
</table>
[Description]:
1. Suppose the user loads in the wrong parameter
 i.e. E < S, the display appears [-Err].
2. To abort the disassembler operation at any
time, press the RESET button of MPF-I.
3. Invalid OP code are indicated by question
 marks.
4. Numbers in Z80 instruction set are all hexa-
decimal numbers.
5. Assignment of Module Origins:
d is the mnemonics of reference counter in
memory. The linker maintains a reference
counter which is similar to the CPU program
counter and is used to assign sections of
machine code to memory locations. By default,
relocatable modules are located in continuous
memory areas automatically by assigning the
current value of the reference counter to be
the module's origin and then incrementing
the reference counter by the module's length.
If users press the following key [ADDR] [6]
[0] [0] [0] [GO], then the value of d will
be set to be zero in this Z80-Disassembly
Utility. If users set the value of S and E
but not to change the contents of d, then
Z80-Disassembly Utility will work from the
starting address S. If users change the
content of d, then the Z80-Disassembly
Utility will execute from the starting ad-
dress of S but set the program counter be-
ginning with the content of d. For example,
mnemonics of S and E are the address of memory
expansion area, but mnemonics of d is the
reference counter. Users can put BASIC In-
terpreter into U6 of the PRT-MPF. Set the
contents of S and E to be 7000H and 77FFH
respectively but set the contents of d to be
2000H, and the result will be the same
as putting the BASIC Interpreter into u7 of
the MPF-I. Set the content of S and E to be
2000H, 27FFH respectively, and don't change
the content of d i.e. keep the content of d
to be zero.
6-3. Memory Dump Utility

[Address]: 6300

The memory dump utility can dump specified memory contents. It prints out the hexadecimal contents of the four consecutive memory locations per line, starting at the specified address.

Example: Dump the data of 000-0040 in memory

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>[UPF--1]</td>
<td>; System reset</td>
</tr>
<tr>
<td>ADDR</td>
<td>6 3 0 0</td>
<td>6.3.0.0.31</td>
</tr>
<tr>
<td>GO</td>
<td>x x x x -E</td>
<td>; S is the mnemonics of the starting address</td>
</tr>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>0.0.0.0.-S</td>
</tr>
<tr>
<td>+</td>
<td>x x x x -E</td>
<td>; E is the mnemonics of the ending address</td>
</tr>
<tr>
<td>0 0</td>
<td>4 0</td>
<td>0.0.4.0.-E</td>
</tr>
<tr>
<td>+</td>
<td>0.0.0.0.-d</td>
<td>; d is the mnemonics of a reference counter</td>
</tr>
<tr>
<td>GO</td>
<td></td>
<td>; Execute the dump memory program</td>
</tr>
<tr>
<td>LF</td>
<td></td>
<td>; Memory dump finished. Press any key, the printer will line feed automatically.</td>
</tr>
<tr>
<td>RS</td>
<td>[UPF--1]</td>
<td>; Return to the monitor program of MPF-I.</td>
</tr>
</tbody>
</table>

1. The display is showing [Err] if the loading parameters have any mistakes (i.e. E < S).
2. If we want to print out only one byte, then the values of S and E must be the same.
3. The usage of d in this section is the same as 6.2.
6-4. BASIC Program Listing Utility

[Address]: 6400

The BASIC program utility can convert the MPF BASIC internal code from memory into symbolic BASIC instructions. It can list out all the BASIC program in MPF-I.

For example: List out the BASIC PROGRAM in the MPF-I. Before executing this utility, users should make sure if it exists some memory of the MPF-I.

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>UPE--1</td>
<td>; System reset</td>
</tr>
<tr>
<td>ADDR</td>
<td>6 4 0 0</td>
<td>6.4.0.0.18 ; set the starting address of Dis-BASIC program</td>
</tr>
<tr>
<td>GO</td>
<td>LST</td>
<td>; Key in number or press GO key directly</td>
</tr>
<tr>
<td>GO</td>
<td></td>
<td>; Execute the Dis-BASIC program</td>
</tr>
<tr>
<td></td>
<td>BASIC</td>
<td>; Dis-BASIC finished, and return to the BASIC Interpreter</td>
</tr>
</tbody>
</table>

1. If there is no BASIC program in memory of the MPF-I, the printer will print out the message 'NO PROGRAM'.
2. When display shows LST, key in the number, and the printer will print numbers of lines. For example, if you want to print out ten the BASIC instructions, key in the hexadecimal number 0A and press GO key, the printer will start to print.
3. When display shows LST, press GO key directly, the printer will print out all the BASIC program.
4. User's BASIC program in MPF-I are terminated by a delimiter code FF if "FF" is detected, the printer will stop printing.